Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Curr Med Chem ; 30(39): 4390-4408, 2023.
Artigo em Inglês | MEDLINE | ID: covidwho-2288049

RESUMO

The COVID-19 pandemic, caused by the coronavirus, SARS-CoV-2, has claimed millions of lives worldwide in the past two years. Fatalities among the elderly with underlying cardiovascular disease, lung disease, and diabetes have particularly been high. A bibliometrics analysis on author's keywords was carried out, and searched for possible links between various coronavirus studies over the past 50 years, and integrated them. We found keywords like immune system, immunity, nutrition, malnutrition, micronutrients, exercise, inflammation, and hyperinflammation were highly related to each other. Based on these findings, we hypothesized that the human immune system is a multilevel super complex system, which employs multiple strategies to contain microorganism infections and restore homeostasis. It was also found that the behavior of the immune system is not able to be described by a single immunological theory. However, one main strategy is "self-destroy and rebuild", which consists of a series of inflammatory responses: 1) active self-destruction of damaged/dysfunctional somatic cells; 2) removal of debris and cells; 3) rebuilding tissues. Thus, invading microorganisms' clearance could be only a passive bystander response to this destroy-rebuild process. Microbial infections could be self-limiting and promoted as an indispensable essential nutrition for the vast number of genes existing in the microorganisms. The transient nutrition surge resulting from the degradation of the self-destroyed cell debris coupled with the existing nutrition state in the patient may play an important role in the pathogenesis of COVID-19. Finally, a few possible coping strategies to mitigate COVID-19, including vaccination, are discussed.


Assuntos
COVID-19 , Humanos , Idoso , SARS-CoV-2 , Dieta de Imunonutrição , Pandemias , Inflamação
2.
Hum Vaccin Immunother ; 19(1): 2191577, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: covidwho-2287347

RESUMO

ABBREVIATIONS: COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; VLPs: Virus like particles; WHO: World Health Organization; E: Envelope; M: Membrane; S: Spike; N: Nucleocapsid; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; FDA: Food and Drug Administration; LNP: lipid-nanoparticle; AZD1222: ChAdOx1 nCoV-19; BNT162b2: Pfizer-BioNTech mRNA vaccine; mRNA-1273: Moderna vaccine; Ad26.COV2.S: Johnson and Johnson - Janssen's vaccine; Gam-COVID-Vac: Sputnik Vaccine; NVX-CoV2373: Novavax vaccine with Matrix-M™ adjuvant.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Estados Unidos , Humanos , ChAdOx1 nCoV-19 , Ad26COVS1 , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2
3.
J Med Virol ; 94(12): 5766-5779, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1976745

RESUMO

The aim of the study was to trace and understand the origin of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through various available literatures and accessible databases. Although the world enters the third year of the coronavirus disease 2019 pandemic, health and socioeconomic impacts continue to mount, the origin and mechanisms of spill-over of the SARS-CoV-2 into humans remain elusive. Therefore, a systematic review of the literature was performed that showcased the integrated information obtained through manual searches, digital databases (PubMed, CINAHL, and MEDLINE) searches, and searches from legitimate publications (1966-2022), followed by meta-analysis. Our systematic analysis data proposed three postulated hypotheses concerning the origin of the SARS-CoV-2, which include zoonotic origin (Z), laboratory origin (L), and obscure origin (O). Despite the fact that the zoonotic origin for SARS-CoV-2 has not been conclusively identified to date, our data suggest a zoonotic origin, in contrast to some alternative concepts, including the probability of a laboratory incident or leak. Our data exhibit that zoonotic origin (Z) has higher evidence-based support as compared to laboratory origin (L). Importantly, based on all the studies included, we generated the forest plot with 95% confidence intervals (CIs) of the risk ratio estimates. Our meta-analysis further supports the zoonotic origin of SARS/SARS-CoV-2 in the included studies.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Pandemias
4.
J Med Virol ; 94(5): 2160-2166, 2022 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1777587

RESUMO

The novel Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variant, Omicron (PANGO lineage B.1.1.529) is being reported from all around the world. The WHO has categorized Omicron as a Variant of Concern (VOC) considering its higher transmissibility and infectivity, vaccine breakthrough cases. As of January 6, 2022, Omicron has been reported in at least 149 countries. Therefore, this study was planned to investigate the transmission dynamics and mutational prevalence of the novel SARS-CoV-2 Omicron variant. The transmission dynamics and Omicron SARS-CoV-2 divergence was studied using GISAID and Nextstrain which provides information about the genetic sequences, epidemiological, geographical, and species-specific data of human, avian, and animal viruses. Further, the mutation prevalence in spike glycoprotein of Omicron was studied, and the frequency of the crucial mutations was compared with the other prevalent VOCs. The transmission dynamics suggest that the Omicron was first identified in South Africa and then it was reported in the United Kingdom followed by the United States and Australia. Further, our phylogenetic analysis suggests that Omicron (BA.1) was clustered distinctly from the other VOCs. In the Spike glycoprotein, the Omicron (B.1.1.529) demonstrates critical 32 amino acid changes. This study may help us to understand mutational hotspots, transmission dynamics, phylogenetic divergence, effect on testing and immunity, which shall promote the progress of the clinical application and basic research.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/epidemiologia , Humanos , Mutação , Filogenia , Prevalência , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
5.
Front Immunol ; 12: 804808, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1731770

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the coronavirus disease 2019 (COVID-19) pandemic is a serious global threat until we identify the effective preventive and therapeutic strategies. SARS-CoV-2 infection is characterized by various immunopathological consequences including lymphocyte activation and dysfunction, lymphopenia, cytokine storm, increased level of neutrophils, and depletion and exhaustion of lymphocytes. Considering the low level of antibody-mediated protection during coronavirus infection, understanding the role of T cell for long-term protection is decisive. Both CD4+ and CD8+ T cell response is imperative for cell-mediated immune response during COVID-19. However, the level of CD8+ T cell response reduced to almost half as compared to CD4+ after 6 months of infection. The long-term protection is mediated via generation of immunological memory response during COVID-19. The presence of memory CD4+ T cells in all the severely infected and recovered individuals shows that the memory response is predominated by CD4+ T cells. Prominently, the antigen-specific CD4+ and CD8+ T cells are specifically observed during day 0 to day 28 in COVID-19-vaccinated individuals. However, level of antigen-specific T memory cells in COVID-19-vaccinated individuals defines the long-term protection against forthcoming outbreaks of SARS-CoV-2.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Memória Imunológica/imunologia , Células T de Memória/imunologia , Animais , Síndrome da Liberação de Citocina/imunologia , Humanos
6.
Journal of Pure & Applied Microbiology ; 16(1):318-326, 2022.
Artigo em Inglês | Academic Search Complete | ID: covidwho-1732583

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, putatively caused by the widespread transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in significant mortality worldwide. The highly varied epidemiology of the disease both temporally and geographically has garnered much attention. The present study aimed to gain a deeper understanding of the varied geospatial disease epidemiology during the first wave of the pandemic. The highly mutable spike (S) protein, which confers fitness to SARS-CoV-2 for its survival and spread was studied using representative sequences determined from the initial phase of the pandemic. Adaptive evolution and selection pressure analysis of 311 whole-genome sequences from across the world including Asia (n=105), Europe (n=101), and the United States (n=105) was performed. A high selection pressure at position 614 of the S protein with a dN/dS (non-synonymous/synonymous substitutions per site) ratio of 124.3 for Asia and 867.9 was predicted for Europe. This positively selected site (i.e. 614) was located in the S1 domain (amino acids 14-680), which acts in binding to the angiotensin-converting co-enzyme 2 (ACE2) receptor. The US strains did not exhibit significant positive selection at position 614. In addition, 10 sites (144, 241, 255, 262, 263, 276, 439,517, 528, and 557) in domain 1 and 19 sites (692, 709, 723, 752, 862, 864, 877, 892, 939, 951, 1015, 1060, 1076, 1114, 1116, 1128, 1176, 1235 and 1240) in domain 2 of the S protein mediating viral entry into host cells, exhibited significant negative selection among European strains of (SARS-CoV-2), however, no negative selection was observed in the Asian and US groups. The D614G spike protein variant has been correlated with fatal outcomes in European population and countries including Italy, France, Belgium, and Spain. D614G variants under high selective pressure in the Asian and European strains were also observed. In addition, the presence of 29 negatively selected codon sites under low selection pressure in the European group may imply improved viral fitness compared with strains circulating in other continents. In conclusion, selective pressure on the S protein, with maximum substitution rate, may have facilitated adaptive evolution of the virus and contributed to the worldwide spread of the virus. [ FROM AUTHOR] Copyright of Journal of Pure & Applied Microbiology is the property of Dr. M. N. Khan and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
J Med Virol ; 94(4): 1738-1744, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1718408

RESUMO

As the latest identified novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC), the influence of Omicron on our globe grows promptly. Compared with the last VOC (Delta variant), more mutations were identified, which may address the characteristics of Omicron. Considering these crucial mutations and their implications including an increase in transmissibility, COVID-19 severity, and reduction of efficacy of currently available diagnostics, vaccines, and therapeutics, Omicron has been classified as one of the VOC. Notably, 15 of these mutations reside in the receptor-binding domain of spike glycoprotein, which may alter transmissibility, infectivity, neutralizing antibody escape, and vaccine breakthrough cases of COVID-19. Therefore, our present study characterizes the mutational hotspots of the Omicron variant in comparison with the Delta variant of SARS-CoV-2. Furthermore, detailed information was analyzed to characterize the global perspective of Omicron, including transmission dynamic, effect on testing, and immunity, which shall promote the progress of the clinical application and basic research. Collectively, our data suggest that due to continuous variation in the spike glycoprotein sequences, the use of coronavirus-specific attachment inhibitors may not be the current choice of therapy for emerging SARS-CoV-2 VOCs. Hence, we need to proceed with a sense of urgency in this matter.


Assuntos
SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Teste para COVID-19 , Humanos , Evasão da Resposta Imune/genética , Mutação , Filogenia , Prevalência , Ligação Proteica/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinação , Ligação Viral
8.
Coronavirus Disease 2019 (COVID-19), Medical Virology: from Pathogenesis to Disease Control, ; : C1-C1, 2020.
Artigo em Inglês | PMC | ID: covidwho-1384323
9.
Methods ; 195: 29-43, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1213580

RESUMO

Therapeutic approaches to COVID-19 treatment require appropriate inhibitors to target crucial proteins of SARS-CoV-2 replication machinery. It's been approximately 12 months since the pandemic started, yet no known specific drugs are available. However, research progresses with time in terms of high throughput virtual screening (HTVS) and rational design of repurposed, novel synthetic and natural products discovery by understanding the viral life cycle, immuno-pathological and clinical outcomes in patients based on host's nutritional, metabolic, and lifestyle status. Further, complementary and alternative medicine (CAM) approaches have also improved resiliency and immune responses. In this article, we summarize all the therapeutic antiviral strategies for COVID-19 drug discovery including computer aided virtual screening, repurposed drugs, immunomodulators, vaccines, plasma therapy, various adjunct therapies, and phage technology to unravel insightful mechanistic pathways of targeting SARS-CoV-2 and host's intrinsic, innate immunity at multiple checkpoints that aid in the containment of the disease.


Assuntos
Corticosteroides/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Vacinas contra COVID-19/administração & dosagem , COVID-19/imunologia , Descoberta de Drogas/tendências , Animais , COVID-19/prevenção & controle , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/tendências , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Interferon alfa-2/administração & dosagem , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia
10.
Methods ; 195: 23-28, 2021 11.
Artigo em Inglês | MEDLINE | ID: covidwho-1135611

RESUMO

Recent emergence of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transpired into pandemic coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been rapidly transmitted across the globe within a short period of time, with more than 106 million cases and 2.3 million deaths. The continuous rise in worldwide cases of COVID-19, transmission dynamics of SARS-CoV-2 including re-infections and enormous case-fatality rates emphasizes the urgent need of potential preventive and therapeutic measures. The development of effective therapeutic and preventive measures relies on understanding the molecular and cellular mechanism of replication exhibited by SARS-CoV-2. The structure of SARS-CoV-2 is ranging from 90-120 nm that comprises surface viral proteins including spike, envelope, membrane which are attached in host lipid bilayer containing the helical nucleocapsid comprising viral RNA. Spike (S) glycoprotein initiates the attachment of SARS-CoV-2 with a widely expressed cellular receptor angiotensin-converting enzyme 2 (ACE2), and subsequent S glycoprotein priming via serine protease TMPRSS2. Prominently, comprehensive analysis of structural insights into the crucial SARS-CoV-2 proteins may lead us to design effective therapeutics molecules. The present article, emphasizes the molecular and structural perspective of SARS-CoV-2 including mechanistic insights in its replication.


Assuntos
SARS-CoV-2/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Replicação Viral/fisiologia , Animais , Sítios de Ligação/fisiologia , COVID-19/epidemiologia , COVID-19/metabolismo , Humanos , Estrutura Secundária de Proteína , Internalização do Vírus
11.
Nepal J Epidemiol ; 10(4): 928-929, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1048902
12.
J Clin Med ; 10(3)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1045407

RESUMO

Coronavirus Disease 19 (COVID-19), due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become an on-going global health emergency affecting over 94 million cases with more than 2 million deaths globally. Primarily identified as atypical pneumonia, it has developed into severe acute respiratory distress syndrome (ARDS), a multi-organ dysfunction with associated fatality. Ever since its emergence, COVID-19 with its plethora of clinical presentations has signalled its dynamic nature and versatility of the disease process. Being a disease with droplet transmission has now assumed the proportion of a suspected airborne nature which, once proved, poses a Herculean task to control. Because of the wide distribution of the human angiotensin-converting enzyme-2 (hACE2) receptors, known for its transmission, we envisage its multiorgan spread and extensive disease distribution. Thus, an extensive review of the extrapulmonary organotropism of SARS-CoV-2 with organ-specific pathophysiology and associated manifestations like dermatological complications, myocardial dysfunction, gastrointestinal symptoms, neurologic illnesses, hepatic and renal injury is needed urgently. The plausible mechanism of site-specific viral invasion is also discussed to give a comprehensive understanding of disease complexity, to help us to focus on research priorities and therapeutic strategies to counter the disease progression. A note on the latest advancements in vaccine research will enlighten the scientific world and equip it for better preparedness.

13.
Hum Vaccin Immunother ; 16(12): 2938-2943, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1010289

RESUMO

The rapid worldwide spread of the COVID-19 pandemic, caused by the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in tens of millions of infections and over one million deaths. SARS-CoV-2 infection affects all age groups; however, those over 60 years old are affected more severely. Moreover, pre-existing co-morbidities result in higher COVID-19-associated mortality in the geriatric population. This article highlights the associated risk factors of SARS-CoV-2 infection in older people and progress in developing COVID-19 vaccines, especially for efficient vaccination of the older population. There is also a summary of immunomodulatory and immunotherapeutic approaches to ameliorate the outcome of COVID-19 in older individuals.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação/tendências , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto/métodos , Humanos , Vacinação/métodos
14.
Hum Vaccin Immunother ; 16(12): 2913-2920, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-998188

RESUMO

Globally, researchers are undertaking significant efforts to design and develop effective vaccines, therapeutics, and antiviral drugs to curb the spread of coronavirus disease 2019 (COVID-19). Plants have been used for the production of vaccines, monoclonal antibodies, immunomodulatory proteins, drugs, and pharmaceuticals via molecular farming/transient expression system and are considered as bioreactors or factories for their bulk production. These biological products are stable, safe, effective, easily available, and affordable. Plant molecular farming could facilitate rapid production of biologics on an industrial scale, and has the potential to fulfill emergency demands, such as in the present situation of the COVID-19 pandemic. This article aims to describe the methodology and basics of plant biopharming, in addition to its prospective applications for developing effective vaccines and antibodies to counter COVID-19.


Assuntos
Anticorpos Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , SARS-CoV-2 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Antivirais/uso terapêutico , Produtos Biológicos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Compostos Fitoquímicos/imunologia , Plantas , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Vacinas Virais/uso terapêutico
16.
Hum Vaccin Immunother ; 16(12): 2905-2912, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-970085

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation. Considering the crucial role of SARS-CoV-2 spike (S) glycoprotein in virus attachment, entry, and induction of neutralizing antibodies, S protein is being widely used as a target for vaccine development. Based on advances in techniques for vaccine design, inactivated, live-vectored, nucleic acid, and recombinant COVID-19 vaccines are being developed and tested for their efficacy. Phase3 clinical trials are underway or will soon begin for several of these vaccines. Assuming that clinical efficacy is shown for one or more vaccines, safety is a major aspect to be considered before deploying such vaccines to the public. The current review focuses on the recent advances in recombinant COVID-19 vaccine research and development and associated issues.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Vacinas Sintéticas/uso terapêutico , COVID-19/genética , COVID-19/metabolismo , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Vetores Genéticos/uso terapêutico , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Sintéticas/metabolismo
17.
Virusdisease ; 31(4): 399-407, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-963987

RESUMO

An ongoing pandemic Coronavirus disease (COVID-19), caused by a newly emerged Coronavirus, SARS-CoV-2 has affected millions of people globally. One of the most crucial structural proteins of SARS-CoV-2 is the Spike glycoprotein (S-glycoprotein), for which the first de novo modelling was envisaged by our group in early 2020, and was superimposed to its predecessor SARS-CoV S-glycoprotein, to determine structural divergence, glycosylation and antigenic variation between SARS-CoV-2 and SARS-CoV. S-glycoprotein is involved in binding with the cellular receptor, membrane fusion, internalization via angiotensin-converting enzyme 2 (ACE2) receptor, and tissue tropism. Upon internalization into the target host cells, the viral genome encodes two precursor polypeptides which get processed into 16 mature nonstructural proteins that play a crucial role in replication and transcription of SARS-CoV-2. Currently S-glycoprotein is one of the most vital targets for vaccine and therapeutics development for COVID-19.

18.
J Biomol Struct Dyn ; 40(4): 1719-1735, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: covidwho-872829

RESUMO

SARS-CoV-2 is the etiological agent of COVID-19 and responsible for more than 6 million cases globally, for which no vaccine or antiviral is available. Therefore, this study was planned to investigate the antiviral role of the active constituents against spike glycoprotein of SARS-CoV-2 as well as its host ACE2 receptor. Structure-based drug design approach has been used to elucidate the antiviral activity of active constituents present in traditional medicinal plants from Ayurveda. Further, parameters like drug-likeness, pharmacokinetics, and toxicity were determined to ensure the safety and efficacy of active constituents. Gene network analysis was performed to investigate the pathways altered during COVID-19. The prediction of drug-target interactions was performed to discover novel targets for active constituents. The results suggested that amarogentin, eufoliatorin, α-amyrin, caesalpinins, kutkin, ß-sitosterol, and belladonnine are the top-ranked molecules have the highest affinity towards both the spike glycoprotein and ACE2. Most active constituents have passed the criteria of drug-likeness and demonstrated good pharmacokinetic profile with minimum predicted toxicity level. Gene network analysis confirmed that G-protein coupled receptor, protein kinase B signaling, protein secretion, peptidyl-serine phosphorylation, nuclear transport, apoptotic pathway, tumor necrosis factor, regulation of angiotensin level, positive regulation of ion transport, and membrane protein proteolysis were altered during COVID-19. The target prediction analysis revealed that most active constituents target the same pathways which are found to be altered during COVID-19. Collectively, our data encourages the use of active constituents as a potential therapy for COVID-19. However, further studies are ongoing to confirm its efficacy against disease. Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Plantas Medicinais , Antivirais/farmacologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
19.
Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics ; : 33-42, 2020.
Artigo em Inglês | PMC | ID: covidwho-833141

RESUMO

Severe acute respiratory syndrome (SARS) is a pandemic that has shocked the world twice over the last two decades caused by a highly transmissible and pathogenic coronavirus (CoV). It causes disease in the lower respiratory tract in humans that was first reported in late 2002 in Guangdong province, China, and later on in December 2019 in Wuhan, China. The two viruses designated as SARS-CoV and SARS-CoV-2, respectively, originated probably from the bat and infected humans via carrier animals. The constant recombination and evolution in the CoV genome may have facilitated their cross-species transmission resulting in recurrent emergence as a pandemic. This chapter intends to accumulate recent findings related to CoV transmission and tentative molecular mechanisms governing the process.

20.
Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics ; : 9-21, 2020.
Artigo em Inglês | PMC | ID: covidwho-831726

RESUMO

In December 2019, suddenly 54 cases of viral pneumonia emerged in Wuhan, China, caused by some unknown microorganism. The virus responsible for these pneumonia infections was identified as novel coronavirus of the family Coronaviridae. The novel coronavirus was renamed as COVID-19 by WHO. Infection from the virus has since increased exponentially and has spread all over the world in more than 196 countries. The WHO has declared a Public Health Emergency of International Concern due to the outbreak of COVID-19. The virus is highly infectious and can cause human-to-human transmission. Every 24 h, cases of COVID-19 increase severalfolds. The WHO is monitoring the SARS-CoV-2 spread very closely via a global surveillance system. The current situation demands the enforcement of strict laws which would help in inhibiting the further spread of COVID-19. Social distancing, international travel restrictions to affected countries, and hygiene are three important ways to nullify SARS-CoV-2.Government and private organizations need to come forward and work together during this pandemic. Public awareness, social distancing, and sterilization must be maintained to neutralize the viral infection, especially in major hot spots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA